Powered by Blogger.
Monday, May 27, 2013
The saddest aspect of life right now is that science gathers knowledge faster than society gathers wisdom.
Isaac Asimov
Isaac Asimov
Nestled inside a wound, a remote-controlled device perks up and begins releasing bacteria-killing heat, a form of thermal therapy that can fell even the most drug-resistant microbes. After it does its job, the electronic heater dissolves, and its biocompatible ingredients become part of the person it has helped to heal.
This biocompatible remote-controlled circuit is an important step toward building dissolvable electronics that could function as “electroceuticals,” devices that perform therapeutic roles and then disappear. Such roles could include stimulating nerve and bone growth, helping heal wounds, delivering drugs, or acting as antibiotics.
Today's news made by « wiredscience »
Though not quite a reality yet, this scenario isn’t too far off. In addition to dissolvable electronics, scientists have now built a biodegradable remote-controlled, power-harvesting circuit, described May 17 in Advanced Materials, and are already testing absorbable thermal electronics in rodents.
This biocompatible remote-controlled circuit is an important step toward building dissolvable electronics that could function as “electroceuticals,” devices that perform therapeutic roles and then disappear. Such roles could include stimulating nerve and bone growth, helping heal wounds, delivering drugs, or acting as antibiotics.
“In each case, the device needs to function only for a timeframe set by a healing process. As such, the ideal scenario is for the device to simply disappear afterward,” said John Rogers, a mechanical engineer at the University of Illinois. Last year, Rogers described the development of a water-soluble, silicon-based circuit that completely dissolves in water; earlier this year, his team produced tiny LEDs that can be injected into the brain.
The remote-controlled circuits are fashioned on super-thin silk and are responsive to radio frequencies. The team builds the capacitors, inductors, and resistors using water-soluble and biocompatible materials: silicon nanomembranes, which work as semiconductors; magnesium, which already plays an important role in biological systems; silicon dioxide or magnesium oxide as insulators; and silk, for the substrate upon which the circuits are crafted.
The system’s antenna — a crucial component for receiving the radio signals used to power the device — is made by layering magnesium onto silk. An ultra-thin version, with a 500-nm thick magnesium antenna, completely dissolves after two hours in deionized water at room temperature. A version that’s six times thicker can take a few days to dissolve.
To demonstrate the functionality of the device, Rogers and his colleagues built a power-harvesting circuit that attached the magnesium-on-silk antenna to an LED. When they switched on a radio transmitter placed as far as 6 feet away, the device converted about 15 percent of the radio waves it received into electrical energy, and the light blinked on. Then, when they placed the circuit in deionized water, it dissolved.
The work is well done and is an important step toward realizing biodegradable electronic systems, said Christopher Bettinger, a polymers engineer at Carnegie Mellon University. Bettinger notes that using radio as a power source means that devices meant to be implanted deeper will need bigger antennas. “I think the power source is going to be the real issue with biodegradable electronics,” he said. “There are many great applications, but defining the specific disease or indication where biodegradable electronics has specific advantage will also be a key part of the broader strategy.”
Now, Rogers and his colleagues are testing a device capable of delivering thermal therapy in rodents. They’ve implanted the ephemeral electronics in approximately 100 mice so far, just beneath the skin. Using an infrared camera, the scientists can monitor whether the devices are working. When they are, they raise the temperature at the implant site by just a few degrees. And so far, Rogers says, there have been “no signs of inflammation, fibrosis, or any other kind of adverse reaction,” throughout the course of surgical implantion and resorption.
This biocompatible remote-controlled circuit is an important step toward building dissolvable electronics that could function as “electroceuticals,” devices that perform therapeutic roles and then disappear. Such roles could include stimulating nerve and bone growth, helping heal wounds, delivering drugs, or acting as antibiotics.
“In each case, the device needs to function only for a timeframe set by a healing process. As such, the ideal scenario is for the device to simply disappear afterward,” said John Rogers, a mechanical engineer at the University of Illinois. Last year, Rogers described the development of a water-soluble, silicon-based circuit that completely dissolves in water; earlier this year, his team produced tiny LEDs that can be injected into the brain.
The remote-controlled circuits are fashioned on super-thin silk and are responsive to radio frequencies. The team builds the capacitors, inductors, and resistors using water-soluble and biocompatible materials: silicon nanomembranes, which work as semiconductors; magnesium, which already plays an important role in biological systems; silicon dioxide or magnesium oxide as insulators; and silk, for the substrate upon which the circuits are crafted.
The system’s antenna — a crucial component for receiving the radio signals used to power the device — is made by layering magnesium onto silk. An ultra-thin version, with a 500-nm thick magnesium antenna, completely dissolves after two hours in deionized water at room temperature. A version that’s six times thicker can take a few days to dissolve.
To demonstrate the functionality of the device, Rogers and his colleagues built a power-harvesting circuit that attached the magnesium-on-silk antenna to an LED. When they switched on a radio transmitter placed as far as 6 feet away, the device converted about 15 percent of the radio waves it received into electrical energy, and the light blinked on. Then, when they placed the circuit in deionized water, it dissolved.
The work is well done and is an important step toward realizing biodegradable electronic systems, said Christopher Bettinger, a polymers engineer at Carnegie Mellon University. Bettinger notes that using radio as a power source means that devices meant to be implanted deeper will need bigger antennas. “I think the power source is going to be the real issue with biodegradable electronics,” he said. “There are many great applications, but defining the specific disease or indication where biodegradable electronics has specific advantage will also be a key part of the broader strategy.”
Now, Rogers and his colleagues are testing a device capable of delivering thermal therapy in rodents. They’ve implanted the ephemeral electronics in approximately 100 mice so far, just beneath the skin. Using an infrared camera, the scientists can monitor whether the devices are working. When they are, they raise the temperature at the implant site by just a few degrees. And so far, Rogers says, there have been “no signs of inflammation, fibrosis, or any other kind of adverse reaction,” throughout the course of surgical implantion and resorption.
Subscribe to:
Post Comments
(Atom)
Check The Pulse
Translate
Categories
Arab Spring Stuff
(10)
Australian Stuff
(6)
Child Abuse
(99)
Female Genital Mutilation
(9)
Honor Killing
(13)
Islam Evil
(442)
Islam Misunderstood
(325)
Islam can be fun
(107)
Islamalice
(110)
Islamic Claptrap; Dhimmitude; Taqiyya; Tabarruj etc
(398)
Islamic Justice: Sharia
(170)
Islamic Misogyny
(187)
Islamic Paedophilia
(89)
Islamic Paranoia
(79)
Islamic Savagery
(273)
Islamic Suicide Bombing
(64)
Islamophobia
(152)
Israeli Stuff
(32)
Jewish Issues; Anti-Semitism; Jew- Hatred
(131)
Outrageous
(31)
Political Correctness
(89)
Political Lies
(116)
Sciency Stuff
(32)
UK Stuff
(15)
USA: Administration Lies
(57)
War; Terrorism; Brutality; Violence; Bloodshed; Savagery
(282)
Women's rights
(142)
Archives
Popular Posts
-
Muslim religious leaders from across the globe pray in front of so-called death wall at the Nazi death camp Auschwitz-Birkenau as part of a...
-
If you are one of those really really stupid interfaith apologists or fellow Muslim citizens who still think Islam is a Religion of Peace ...
-
Skype Weddings: Muslims Find Another Illegal Way To Get Green Cards For Their Cousins. Thanks to HalalPorkShop Brilliant! Using OUR tech...
-
You will surely find the most intense of the people in animosity toward the believers [to be] the Jews... Koran: 5:82 Jordanian newsp...
-
Surely the hypocrites strive to deceive Allah. He shall retaliate by deceiving them. Koran: 4:142 Those words are Taqiyya, Tawriya, ...
-
We reject you. Hostility and hate have come between us forever, unless you believe in Allah only.' Koran: 60:4 Son's suicide ...
-
Kill the Jews wherever you find them. This pleases God, history, and religion. This saves your honor. God is with you. Hajj Amin al Huss...
-
The climate of Medina did not suit some people so the Prophet ordered them to drink camel urine as a medicine. Bukhari V7B71N590 Rarely d...
-
I heard Allah's Apostle saying, 'Allah guarantees that He will admit the Muslim fighter into Paradise if he is killed, otherwise He...
-
This Islamic nutjob in a suit and tie says " Westerners value human life very much" as if that is an insult. Please someone, hel...
Blogroll
Blank
This is blank too
Zilch
This is blank
0 comments:
Post a Comment
Please be Truthful and polite.